top of page

Evidence suggests that dopamine activity provides a US-related prediction error for Pavlovian conditioning and the reinforcement signal supporting the acquisition of habits. However, its role in goal-directed action is less clear. There are currently few studies that have assessed dopamine release as animals acquire and perform self-paced instrumental actions. Here we briefly review the literature documenting the psychological, behavioral and neural bases of goal-directed actions in rats and mice, before turning to describe recent studies investigating the role of dopamine in instrumental learning and performance. Plasticity in dorsomedial striatum, a central node in the network supporting goal-directed action, clearly requires dopamine release, the timing of which, relative to cortical and thalamic inputs, determines the degree and form of that plasticity. Beyond this, bilateral release appears to reflect reward prediction errors as animals experience the consequences of an action. Such signals feedforward to update the value of the specific action associated with that outcome during subsequent performance, with dopamine release at the time of action reflecting the updated predicted action value. More recently, evidence has also emerged for a hemispherically lateralised signal associated with the action; dopamine release is greater in the hemisphere contralateral to the spatial target of the action. This effect emerges over the course of acquisition and appears to reflect the strength of the action-outcome association. Thus, during goal-directed action, dopamine release signals the action, the outcome and their association to shape the learning and performance processes necessary to support this form of behavioral control.

What role does striatal dopamine play in goal-directed action?

Evidence suggests that dopamine activity provides a US-related prediction error for Pavlovian conditioning and the reinforcement signal supporting the acquisition of habits. However, its role in goal-directed action is less clear. There are currently few studies that have assessed dopamine release as animals acquire and perform self-paced instrumental actions. Here we briefly review the literature documenting the psychological, behavioral and neural bases of goal-directed actions in rats and mice, before turning to describe recent studies investigating the role of dopamine in instrumental learning and performance. Plasticity in dorsomedial striatum, a central node in the network supporting goal-directed action, clearly requires dopamine release, the timing of which, relative to cortical and thalamic inputs, determines the degree and form of that plasticity. Beyond this, bilateral release appears to reflect reward prediction errors as animals experience the consequences of an action. Such signals feedforward to update the value of the specific action associated with that outcome during subsequent performance, with dopamine release at the time of action reflecting the updated predicted action value. More recently, evidence has also emerged for a hemispherically lateralised signal associated with the action; dopamine release is greater in the hemisphere contralateral to the spatial target of the action. This effect emerges over the course of acquisition and appears to reflect the strength of the action-outcome association. Thus, during goal-directed action, dopamine release signals the action, the outcome and their association to shape the learning and performance processes necessary to support this form of behavioral control.
bottom of page